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Granular spirals on erodible sand bed submitted to a circular fluid motion

H. Caps and N. Vandewalle
GRASP, Institut de Physique B5, Universite´ de Liège, B-4000 Lie`ge, Belgium

~Received 10 December 2002; published 11 September 2003!

An experimental study of a granular surface submitted to a circular fluid motion is presented. The appear-
ance of an instability along the sand-water interface is observed beyond a critical radiusr c . This creates ripples
with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as
a function of the rotation speedv of the flow and as a function of the height of waterh above the surface. The
study ofr c as a function ofh, v, andr parameters is reported. Thereafter,r c is shown to depend on the rotation
speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases
and is proportional to the radial distancer. The azimuthal angle« of the spiral arms is studied. It is found that
« scales withhvr . This lead to the conclusion that« depends on the fluid momentum. Comparison with
experiments performed with fluids allows us to state that the spiral patterns are not the signature of an
instability of the boundary layer.
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I. INTRODUCTION

Many experiments have been dedicated to the study
fluid flows between rotating stainless-steel disks@1–4#.
Three experimental configurations can be found in the lite
ture: two contrarotative disks, the upper disk rotating wh
the other is at rest, and the lower disk rotating while the ot
being at rest. For a given Reynolds number, i.e., at a gi
distance from the center of the plate@5#, a transition in the
boundary layer occurs. The encountered instabilities are
von Kármán, Ekman, or Bo¨dewadt types and may lead t
one of the following patterns:~i! concentric circles at a low
rotation speed,~ii ! spirals at a medium rotation speed, a
~iii ! a disordered state at large rotation speeds@4#.

On the other hand, one can note the growing interes
the statistical physics community to the granular state. P
ticularly, many works have been dedicated to the study of
ripple formation on sand bed eroded by a fluid such as ai
water @6–10#. Despite the familiar aspect of the ripples, t
physical mechanisms involved in their formation are rela
to complex phenomena of granular transport. When they
submitted to the fluid shear stress, the grains are transpo
along large distances~many centimeters! by saltation. They
lose a fraction of their energy in inelastic collisions with t
grains being at rest on the granular bed and keep moving
succesive small jumps, this is called thereptation. The
smaller grains may remain insuspensionin the fluid flow
@11#. Beside those grain motions induced by the fluid,ava-
lanchesmay occur if the surface slope exceeds the rep
angle@11#.

In the present paper, both subjects will be combined i
single experiment. We will study the stability of a granul
surface submitted to a circular fluid flow. Studying the g
ometry of the patterns created at the sand-water interface
allow us to emphasize the interaction between the fluid fl
and the sand bed.

In the following section, the experimental setup will b
described. In Sec. III, we will present the results, and disc
them in Sec. IV. Finally, a summary of our findings is give
in Sec. V.
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II. EXPERIMENTAL SETUP

Our experimental setup is illustrated in Fig. 1 and cons
of a horizontal circular plate connected by a belt to an
gine. The rotation speed can be adjusted from 8 rpm up
100 rpm. A cylindrical container~radius R511 cm) filled
with water and sand~mean grain diameterd5282.5mm) is
placed in the center of the plate and put into rotation. Wh
the rotation is instantaneously stopped, the sand bed rem
fixed while the water continues its inertial circular motio
The shear stress applied to the sand by the water flow
tiates various grain motions: saltation, reptation, and susp
sion. After a short time~typically 2s!, current ripples are
formed ~see Fig. 1 bottom!.

A charge-coupled device camera is placed on the top
the plate and records an image of the sand bed. In orde
avoid shadow effects, the container circumference is hom
geneously illuminated. An annular luminescent tube with
radius of 12 cm is placed horizontally around the contain
at the level of the sand-water interface. We assume that
height of sand is given by the intensity of the pixels on t
gray scale images, due to this side lightning. Within th
assumption, the landscape is given with an accuracy
0.7d'200 mm.

The parameters of our experiment are~i! the height of
waterh over the sand bed before rotation, and~ii ! the rota-
tion speedv of the container. Moreover, one should note th
the Reynolds number varies on the granular surface a
function of the distance 0,r ,R from the center of the con
tainer @5#. Therefore, the Reynolds number Re we will u
can be written as

Re5Ar 2
v

n
, ~1!

where n is the kinematic viscosity of the water, i.e.,n
51026 m2 s21.
©2003 The American Physical Society03-1
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FIG. 1. Top—experimental
setup for the ripple formation and
analysis. Bottom—profile of the
landscape along the circumferenc
of the container after the forma
tion of the ripples. Notice that the
image has been extended ver
cally for clarity.
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III. RESULTS

We have performed experiments with values ofv ranging
from 29 rpm to 71 rpm, and values ofh ranging from 1.05
cm to 3.36 cm. For each experiment, an image of the la
scape has been taken. On each image, we have extr
transversal profiles of the landscape at 50 differentr values,
i.e., different Re values. Figure 2 presents typical data
two values of the Reynolds number: Re510.4 (r 53 cm)
and 34.6 (r 510 cm). For small Reynolds number value
the profile is very noisy and no modulation is observed. T
noise comes from the irregularities of the granular surfa
On the contrary, we have noticed a periodic profile for la
values of Re. The transition between noisy and periodic
gions is well defined and occurs at a given critical radiusr c .
The profiles are periodic abover c and noisy elsewhere. Thi
kind of behavior is characteristic of the emergence of
instability in the sand-water interface. This is similar to wh
is observed in the case of an instability in the boundary la
of a fluid flowing over a stainless-steel disk@2#.

For all tested values of both parametersh andv, we have
noticed the appearance of that instability for high Reyno
number values. However, we have remarked that the pa
formed on the granular landscape depends on the experim

FIG. 2. Height of sand~f! as a function of the position at a give
Reynolds number: Top—Re510.4, only fluctuations due to san
grains are visible. Bottom—Re534.6, the instability is character
ized by a periodic profile. The experimental parameters arev
545.18 rpm andh51.6 cm. Note that images have been resca
in order to be compared. The profiles have, respectively, a lengt
19 cm and 62 cm.
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tal parameters. Indeed, we have recorded three kinds of
terns:~i! one spiral;~ii ! two superposing spirals, one havin
the arms close to the tangential direction to the contai
circumference and the other being more open; and~iii ! two
paired spirals having the same number of arms and ha
their arms coupled one to the other. Figures 3~a–c! illustrate
those different patterns.

We have constructed a phase diagram giving the pat
as a function of bothv andh parameters. One should no
~see Fig. 4! how the pattern depends on the rotation speedv
and is less dependent on the height of waterh. Looking for
details in images corresponding to the phase diagram,
have concluded that the patterns evolve as follows. At a
rotation speed (v<35 rpm), spirals are created above
critical radiusr c . An increase ofv causes the increase of th
spiral arm angles, as we will see further. At medium rotat
speeds (35,v,45 rpm) a second spiral appears. The ar
of this second spiral are nearly tangential to the cylind
circumference. As a consequence, one observes two su
posed spirals. If the rotation speed is increased againv

d
of

FIG. 3. Depending on the rotation speed, three patterns ca
observed: one spiral, two superposing spirals, and two paired
rals. ~a! At low rotation speeds (v<35 rpm) the ripples form one
spiral. ~b! At medium speeds (35,v,45 rpm) two spirals are su
perposed, one having arm azimuthal angles larger than the o
ones.~c! At high rotation speeds (v>45 rpm) the arms of the two
spirals are coupled.
3-2



ases are
r

GRANULAR SPIRALS ON ERODIBLE SAND BED . . . PHYSICAL REVIEW E68, 031303 ~2003!
FIG. 4. Phase diagram giving the observed pattern as a function of the rotation speedv and the height of water (h). The rotation speed
of the container clearly plays a role in the pattern formation, while the height of water has no significant effect. The three ph
separated by solid lines. Atv,35 rpm, only one spiral is observed. A second spiral appears for 35,v,45 rpm and is paired to the forme
spiral for v.45 rpm.
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>45 rpm), the second spiral becomes more and more o
so that both spirals are paired.

A. Fourier analysis

In order to determine the geometrical properties of
patterns, we have decomposed the data of the different
files within Fourier series, according to the equation

f ~x!5
a0

2
1 (

m51

N FamcosS 2pmx

L D1bmsinS 2pmx

L D G ,
~2!

wheref (x) is the height of sand at positionx along the circle
of radiusr, m is the Fourier mode,am andbm are the Fourier
coefficients. The sum is extended overN terms, whereN
equals to the number of points in the discretization off (x).
Typically, N'2000. One should note that the geometry
our experimental setup allows us to use Fourier approxi
tion without restriction. From this approximation, we ca
compute the statistical weightAm of a given modem in the
series by

Am5Aam
2 1bm

2 . ~3!

The knowledge of all weightsAm allows us to determine the
mean amplitudêA& of the ripples,

^A&5A(
m51

N

Am
2 . ~4!
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The mean wavelength of the patterns at the radiusr is then
given by

^l&52pr S (
m51

N

Amm

(
m51

N

Am
D 21

, ~5!

which is the circumference at the considered radiusr, di-
vided by the statistical mean of the weighted modesm. It is
important to note that practically, the sums are calcula
from m54 instead ofm51. In such a way, we remove th
large modulations of the surface. Those large oscillations
artifacts due to the preparation of the sand bed before
experiment is started. Such problem is also encountere
other experiments dealing with granular surfaces@6,7#.

B. Critical radius r c

With the help of Fourier decompositions, one can eas
find the value ofr c . For all radii r ,r c , the profiles are
noisy. In such a noise, all frequencies have the same p
ability of being found in the profiles~white noise!. Math-
ematically, this fact results in Fourier series which are su
of sinesandcosineswith nearly the same statistical weigh
Am . On the contrary, forr>r c the periodic shape of the
profiles implies the existence of a characteristic modeM in
each profile. The value ofM is equals to the number o
ripples in the profile. The plot ofAm as a function of the
Fourier modes will thus exhibit a peak corresponding to
mode M. Eventually, the critical radiusr c is equal to the
radius where the first peak is recorded. Practically,r c is de-
fined as the radius where the highest peak reaches a de
threshold value.
3-3
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In Fig. 5, we report the amplitudesAm of the different
Fourier modes as a function of the radiusr. One can see tha
peaks appear only forr>4.1 cm, meaningr c54.1 cm. Note
that in this case,M'6 for r 5r c .

We have studied the dependence ofr c on the height of
water and the rotation speed. Figure 6 presents the m
ripple amplitudê A& as a function of the radiusr for differ-
ent values ofh at fixedv541.38 rpm. First, one should not
that ther axis can be decomposed into two distinct regio

~i! If r ,r c , all curves are nearly constant. This is t
stable part of the sand-water interface.

~ii ! For r>r c , all curves grow. Note that the critical ra
dius is the same for all curves. This means that the birth
the instability is not controlled by the height of water.

Moreover, one can see hoŵA& is inversely proportional
to h. Thus, the higher the velocity gradient of the water
the larger are the ripples.

FIG. 5. AmplitudeAm of the different Fourier modesm as a
function of the radiusr. Since the instability is characterized b
periodic profiles, Fourier peaks are observed in the spectrum
for radii r .r c . On the contrary, stable regions have no perio
characteristics. The critical radiusr c54.1 cm is emphasized by
solid line. The experimental parameters are:v545.18 rpm andh
51 cm.

FIG. 6. Mean amplitudêA& as a function of the radiusr. Dif-
ferent values of the water heighth are illustrated. The solid vertica
line gives the critical radiusr c . One should note thatr c seems to be
independent ofh.
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Plotting the critical radiusr c as a function of the rotation
speedv ~see Fig. 7! shows that the instability rises as soon
as the fluid speed is high. Fitting the data with the sin
power law

r c~v!5a1b vt, ~6!

we found thatt is roughly equal to21/2. From the defini-
tion of Eq. ~1!, we deduce that thecritical Reynolds number
Rec is constant, and is

Rec5Ar c
2 v

n
;16. ~7!

C. Ripple wavelengthŠl‹

Using Eq.~5!, we have studied the evolution of the mea
ripple wavelengtĥ l& from the center of the plate, to th
sides of the container. Below the critical radiusr c , no modu-
lation is observed and̂l& is nearly zero.

Within the unstable part of the interface, the measurem
of the mean ripple wavelength is perturbated by the prese
of ‘‘defects.’’ Indeed, when two ripples collapse a jump
^l& is recorded. We have noticed that on an image, the
fects are almost situated at the same radius. Their role i
adjust the number of ripples to the shear conditions. In or
to increase the accuracy of the measurements, we have
composed the wholer range into intervals which do not con
tain such defects.

We have found that̂l& grows linearly with the distance
form the center of the plate:

^l&5br for r .r c . ~8!

This observation is consistent with the existence of spir
with constant arm numbers in the considered interva
Moreover, we have noticed that the growth rateb does not
depend on the height of water but decreases with the rota

ly
FIG. 7. Critical radiusr c as a function of the rotation speedv.

A fit using Eq.~6! is also illustrated. The power exponent is foun
to be equal to21/2.
3-4
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GRANULAR SPIRALS ON ERODIBLE SAND BED . . . PHYSICAL REVIEW E68, 031303 ~2003!
speedv, according to a power law with power exponen
21. Eventually, we see that the mean ripple wavelen
obeys the scaling

^l&;
r

v
for r .r c . ~9!

In Fig. 8, we have plottedb as a function ofv as well as a
fit using Eq.~9!.

An interpretation of the decrease ofb can be deduced
from the phase diagram illustrated in Fig. 4. As the heigh
water is changed at fixed rotation speed, no major modifi
tion of the patterns is observed~nearly same wavelength!.
The consequence is thatb does not depend onh. On the
other way, we have seen thatv may cause the appearance
a second spiral. Such an occurrence results in a la
amount of spiral arms, i.e., in a larger number of rippl
Therefore, the mean ripple wavelength is lower whenv in-
creases. The small values ofb at large v values clearly
shows this fact.

An important observation is thatno well-defined transi-
tion is observed in the curve, givinĝl& as a function ofv.
Indeed, the decrease of the mean ripple wavelength seem
be continuous. The way of appearance of the so-called
ond spiral is one reason explaining this result. Atv
'35 rpm, the second spiral is formed but has a smaller
plitude than the former spiral. The statistical weight of
wavelength is thus smaller than those of the former spiral
the rotation speed increases, the second spiral ampli
growth. Eventually, the measured mean ripple wavelen
corresponds to the number of spiral arms of both spirals,
becomes at least twice those measured when only one s
was observed. One should note that since^l& is divided by a
factor larger than 2, we see that the hydrodynamics a
tends to increase the number of arms of each spiral. This
been mentioned above as the origin of the defects in
spiral patterns.

FIG. 8. Log-log graph giving the growth rateb of the mean
ripple wavelengtĥ l& as a function of the rotation speedv. A fit
using Eq.~9! is also illustrated.
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D. Azimuthal angle «

Going deeper into the geometrical description of the p
terns, we have measured the azimuthal angle« of the spiral
arms. This parameter is defined at a given point by the an
between a ripple crest and the tangential line to the cir
centered on the plate and passing by the considered p
~see Fig. 9!. Practically,« is measured between two conce
tric circles with radii differing fromDr 50.25 cm.

In order to determine the influence of the experimen
parametersh, v, and r on the azimuthal angle« , we have
proceeded as follows. At a given distance from the cente
the container, i.e., a givenr value, and a givenv value, we
measured« for different values of the height of waterh. This
process is repeated all over the container diameter. Then
height of waterh was fixed, and the procedure explaine
above was applied for different values of the rotati
speedv.

We have noticed that the azimuthal angle« increases with
the distance from the center of the container as well as w
the height of waterh and the rotation speedv. Moreover, the
measurements collapse when they are plotted as a functio
the producthvr ~see Fig. 10!. It appears that the experimen
tal data could be considered as following a power law as w

FIG. 9. The azimuthal angle« is defined as the angle betwee
the ripples crest~dashed line! and the tangential direction. The az
muthal angle« is measured between two concentric circles~solid
lines! of radii r and r 1Dr , respectively (Dr 50.25 cm).

FIG. 10. Semilog graph of the azimuthal angle« as a function
of the rotation speedv multiplied by the height of waterh and the
radial distancer. A fit using Eq.~10! is also illustrated.
3-5
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as saturating exponentially. We have chosen the expone
law in order to avoid the azimuthal angle to grow to infinit
The fit of the datasets shows that

«5«M2a1expS 2
hvr

a2
D , ~10!

where «M547°68° is the asymptotical value of the az
muthal angle at highhvr values,a1 and a2 being fitting
parameters.

From Eq. ~10!, one can see that the azimuthal angle«
meets the horizontal axis~say, « 50!, for the critical hvr
product valuepc ,

pc5a2 lnS «M

a1
D531024 m2 s21. ~11!

Since the azimuthal angle is zero at this critical valuepc ,
concentric circles must be observed forhvr 5pc and spirals
with azimuthal angles«,0 for values ofhvr ,pc . How-
ever, we have never observed such patterns.

An interpretation of this can be deduced from the cons
eration of the fluid momentumP5mv, wherem is the mass
of fluid, and v its linear speed. Considering thatr51
3103 kg m23 is the density of the fluid, and that the radiu
of the container,R50.11 m, one gets

P5rpR2 hvr , ~12!

what contains thehvr term. This thus means that the valu
of the azimuthal angle« is governed by the fluid momentum
according to Eq.~10!. Combining Eqs.~10! and~12! we are
able to predict the fluid momentum corresponding to conc
tric circles. This critical momentumPc reads

Pc5rpR2pc50.011 kg m s21. ~13!

For fluid momentumP,Pc , spirals with negative azimutha
angles must be created.

The fact that no concentric circles are observed com
from the lack of granular transport for such small fluid m
mentum. Indeed, ripples are only created when the grains
transported in the fluid, and this is only possible if the flu
shear stress exceeds a certain threshold. Typically, ripple
observed only for fluid momentumP.0.1 kg m s21.

IV. DISCUSSION

The instability encountered in our experiment creates p
terns very similar to those observed in the case of a fl
flowing over a disk at rest@1–4#. The instability resulting in
such patterns takes place in the Bo¨dewadt boundary layer
i.e., in the boundary layer over the bottom disk. The patte
we observe are also similar to those observed in Thom
experiment@9#. In the latter experiment the ripples are cr
ated by an acceleration of the container. The acceleration
Dv is somewhat analogous to the rotation speedv presented
here. Hereafter, our experiment and the Thomas one wil
referred as ‘‘granular’’ one, while those in Refs.@1–4# will
be defined as ‘‘fluid’’ experiments.
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Despite the similarity between the patterns, it is not ob
ous that the spiral patterns observed here are of the s
nature as the fluid ones or as the Thomas ones. We are
attempting to make some comparison in order to different
between the different kinds of instabilities. It is important
notice that Bo¨dewadt flows are very complicated to crea
experimentally. As a consequence, there is a poor amoun
data.

The major difference between the ‘‘granular experimen
and the fluid ones is the dependence of the mean wavele
of the patterns on the distance from the center~see Table I!.
In Thomas and our experiments, the mean pattern wa
length increases with distance from the center while it
nearly constant in fluid experiments. However, the order
magnitude of̂ l& for all experiments is about 1 cm.

The values of the azimuthal angle of the spirals obser
in fluid experiments range between 13° and 17°, wha
nearly constant compared to the angles measured by Tho
~between 20° to 70°) and the angles we measured~from 4°
at low fluid momentum to 45° at higher fluid momentum!.
The most important observation is that« increases with the
radius in our experiment, while it decreases in Ref.@9#.

Measurements of critical Reynolds numbers show t
Rec decreases with the rotation speed in all experime
However, the dependence is very slight in fluid experimen
compared to what is observed in granular ones. Moreo
Rc'40 in fluid experiments and is only around 16 here.

From the comparison of the orders of magnitude and
behaviors, we can conclude that the instability observed h
is not the signature of an instability in the boundary lay
What we observed here are ripples, similar to those obse
in coastal areas, but in a rotating frame. The spiral sh
formed by the ripple crests may be due to the presenc
centrifugal forces and other effects caused by the motion
the grains in the fluid. Despite the apparent similarity b
tween our experiment and Ref.@9#, the created patterns d
not behave in the same way, emphasizing the complexity
the fluid-granular interaction.

V. SUMMARY

An experimental study of the instability rising on a san
water interface has been proposed. The formation of the
ral patterns has been shown and has been described wit
help of a phase diagram.

The properties of the critical radius where the instabil
forms have been studied. The critical radiusr c is found to
decrease with the rotation speed of the container, accor

TABLE I. Behaviors of the physical parameters^l&, « , and Rec
for different experiments.

Scaling
Parameters Here Thomas@9# Bödewadt@5#

^l& ;r /v ;r ;cte
« ;hvr ;r 20.5 ;cte

Rec '16 ;v20.1 '40
3-6
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GRANULAR SPIRALS ON ERODIBLE SAND BED . . . PHYSICAL REVIEW E68, 031303 ~2003!
to a square law, giving a critical Reynolds number equa
Rec'16.

The mean ripple wavelength is proportional to the d
tance from the center of the container and inversely prop
tional to the rotation speed of the container. Studying
azimuthal angles of the spirals, we have shown that
angle is governed by the momentum of the fluid,P5mv,
wherem is the mass of fluid andv its linear speed. From fits
of experimental data, the azimuthal angle is found to satu
at around 45° for very high fluid momentum. A comparis
between instabilities rising in the Bo¨dewadt boundary layer
03130
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as well as a comparison with an experiment of ripple form
tion in an accelerated frame, allows us to conclude that
observed patterns are not the signature of a fluid instabi
The instability of the sand-water interface we observe
similar to natural ripples created in a rotating frame.
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