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Granular spirals on erodible sand bed submitted to a circular fluid motion
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An experimental study of a granular surface submitted to a circular fluid motion is presented. The appear-
ance of an instability along the sand-water interface is observed beyond a criticalrraditgs creates ripples
with a spiral shape on the granular surface. A phase diagram of such patterns is constructed and discussed as
a function of the rotation speed of the flow and as a function of the height of wakeabove the surface. The
study ofr. as a function oh, w, andr parameters is reported. Thereafteris shown to depend on the rotation
speed according to a power law. The ripple wavelength is found to decrease when the rotation speed increases
and is proportional to the radial distanceThe azimuthal angle of the spiral arms is studied. It is found that
e scales withher. This lead to the conclusion that depends on the fluid momentum. Comparison with
experiments performed with fluids allows us to state that the spiral patterns are not the signature of an
instability of the boundary layer.
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I. INTRODUCTION Il. EXPERIMENTAL SETUP

Manv experiments have been dedicated to the study of Our experimental setup is illustrated in Fig. 1 and consists
fluid flg/ws pbetween rotating_ stainless-steel digks—4] Y 9t a horizontal circular plate connected by a belt to an en-
Three experimental configurations can be found in the literad <" The rotation speed can be adjusted from 8 rpm up to

i . ! : . . ~100 rpm. A cylindrical containefradius R=11 cm) filled
ture: two contrarotative disks, the upper disk rotating Whlley\lith water and sandmean grain diametei=282.5 m) is

being at rest. For a given Reynolds number, i.e., at a give laced ir_1 th? genter of the plate and put into rotation. Whe_n
distance from the center of the pldt], a transition in the t_ e rotatl_on is mstantaneogsly st(_)pp_ed, t_he s_and bed remains
boundary layer occurs. The encountered instabilities are df*€d while the water continues its inertial circular motion.
von Kaman, Ekman, or Bdewadt types and may lead to The sheqr stress appllt_ad to the s_and by thg water flow ini-
one Of the fo”owing patternqj) Concentric Circ|es at a IOW tiates various gra|n motions: SaltatIOﬂ, reptatlon, and Suspen-
rotation speed(ii) spirals at a medium rotation speed, andsion. After a short time(typically 29, current ripples are
(iii ) a disordered state at large rotation speles formed (see Fig. 1 bottom

On the other hand, one can note the growing interest of A charge-coupled device camera is placed on the top of
the statistical physics community to the granular state. Pathe plate and records an image of the sand bed. In order to
ticularly, many works have been dedicated to the study of thevoid shadow effects, the container circumference is homo-
ripple formation on sand bed eroded by a fluid such as air ogeneously illuminated. An annular luminescent tube with a
water[6—10]. Despite the familiar aspect of the ripples, the radius of 12 cm is placed horizontally around the container,
physical mechanisms involved in their formation are relatecht the level of the sand-water interface. We assume that the
to complex phenomena of granular transport. When they argeight of sand is given by the intensity of the pixels on the
submitted to the fluid shear stress, the grains are transportgﬂay scale images, due to this side lightning. Within this
along large distance@nany centimetejsby saltation They  assumption, the landscape is given with an accuracy of
lose a fraction of their energy in inelastic collisions with the 0.7d~200 pm.
grains being at rest on the granular bed and keep moving by o parameters of our experiment &ie the height of

succesive small jumps, this is called theptation The . iarh over the sand bed before rotation, aid the rota-

Fﬂ?"g;g(rja;ntiorggy rrZ'rr?a:InnotI%lfsp'enndSIzgg E)hetggl(fjlufilsm-l tion speedwv of the container. Moreover, one should note that
: ! grai ; inau y a the Reynolds number varies on the granular surface as a
lanchesmay occur if the surface slope exceeds the r€POSEnction of the distance @r <R from the center of the con-

angle[11]. . .
In the present paper, both subjects will be combined in %22(3&53\}&2??3& the Reynolds number Re we will use

single experiment. We will study the stability of a granular
surface submitted to a circular fluid flow. Studying the ge-
ometry of the patterns created at the sand-water interface will
allow us to emphasize the interaction between the fluid flow Re= A /rzﬂ,
and the sand bed.
In the following section, the experimental setup will be
described. In Sec. lll, we will present the results, and discuss
them in Sec. IV. Finally, a summary of our findings is given where v is the kinematic viscosity of the water, i.ev,
in Sec. V. =10 m?s 1.
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FIG. 1. Top—experimental
setup for the ripple formation and

Digital Camera+—————— '
analysis. Bottom—profile of the

Water— landscape along the circumference
of the container after the forma-

Plate — ' - tion of the ripples. Notice that the

& Regulation image has been extended verti-
cally for clarity.

Ill. RESULTS tal parameters. Indeed, we have recorded three kinds of pat-
) . ) terns:(i) one spiral;(ii) two superposing spirals, one having
We have performed experiments with values.ofanging  he arms close to the tangential direction to the container
from 29 rpm to 71 rpm, and values bfranging from 1.05  circumference and the other being more open; éinyitwo
cm to 3.36 cm. For each experiment, an image of the landpajred spirals having the same number of arms and having
scape has been taken. On each image, we have extract@fbir arms coupled one to the other. Figuréa-3) illustrate
transversal profiles of the landscape at 50 differevilues, those different patterns.
i.e., different Re values. Figure 2 presents typical data for We have constructed a phase diagram giving the pattern
two values of the Reynolds number: R&0.4 =3 cm)  as a function of botho andh parameters. One should note
and 34.6 (=10 cm). For small Reynolds number values, (see Fig. 4 how the pattern depends on the rotation speed
the profile is very noisy and no modulation is observed. Theand is less dependent on the height of wéitekooking for
noise comes from the irregularities of the granular surfacedetails in images corresponding to the phase diagram, we
On the contrary, we have noticed a periodic profile for largenave concluded that the patterns evolve as follows. At a low
values of Re. The transition between noisy and periodic rerotation speed ¢=35 rpm), spirals are created above a
gions is well defined and occurs at a given critical radius  critical radiusr .. An increase ofv causes the increase of the
The profiles are periodic above and noisy elsewhere. This spiral arm angles, as we will see further. At medium rotation
kind of behavior is characteristic of the emergence of arspeeds (35 w<45 rpm) a second spiral appears. The arms
instability in the sand-water interface. This is similar to whatof this second spiral are nearly tangential to the cylinder
is observed in the case of an instability in the boundary layetircumference. As a consequence, one observes two super-
of a fluid flowing over a stainless-steel diEk]. posed spirals. If the rotation speed is increased again (
For all tested values of both parameterand w, we have
noticed the appearance of that instability for high Reynolds
number values. However, we have remarked that the pattern
formed on the granular landscape depends on the experimen-
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FIG. 2. Height of sandf) as a function of the position at a given FIG. 3. Depending on the rotation speed, three patterns can be
Reynolds number: Top—Re10.4, only fluctuations due to sand observed: one spiral, two superposing spirals, and two paired spi-
grains are visible. Bottom—Re34.6, the instability is character- rals. (a) At low rotation speeds¢=<35 rpm) the ripples form one
ized by a periodic profile. The experimental parameters are spiral.(b) At medium speeds (350 <45 rpm) two spirals are su-
=45.18 rpm anch=1.6 cm. Note that images have been rescaledperposed, one having arm azimuthal angles larger than the other
in order to be compared. The profiles have, respectively, a length afnes.(c) At high rotation speedse{=45 rpm) the arms of the two
19 cm and 62 cm. spirals are coupled.
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FIG. 4. Phase diagram giving the observed pattern as a function of the rotationsspeeidthe height of waterh(. The rotation speed
of the container clearly plays a role in the pattern formation, while the height of water has no significant effect. The three phases are
separated by solid lines. A4<<35 rpm, only one spiral is observed. A second spiral appears far3545 rpm and is paired to the former
spiral for w>45 rpm.

=45 rpm), the second spiral becomes more and more opeithe mean wavelength of the patterns at the radiissthen
so that both spirals are paired. given by
-1

) . Apm
A. Fourier analysis

(N)y=2ar (5)

In order to determine the geometrical properties of the
patterns, we have decomposed the data of the different pro-
files within Fourier series, according to the equation

2mTmx
a,co 3

Am
1

?MZ.‘?‘MZ

which is the circumference at the considered radiusli-
vided by the statistical mean of the weighted modest is
' important to note that practically, the sums are calculated
2) from m=4 instead ofm=1. In such a way, we remove the
large modulations of the surface. Those large oscillations are
. . . . artifacts due to the preparation of the sand bed before the
wheref (x) is the height of sand at positionalong the circle gy neriment is started. Such problem is also encountered in

of radiusr, mis the Fourier modea,, andb, are the Fourier  iner experiments dealing with granular surfapgg].
coefficients. The sum is extended ovdrterms, whereN

equals to the number of points in the discretizatiorf ©f). B. Critical radius r
Typically, N~2000. One should note that the geometry of  \yjit the help of Fourier decompositions, one can easily
our experimental setup allows us to use Fourier approximagng the value ofr.. For all radiir<r., the profiles are

tion without restriction. From this approximation, we can noisy. In such a noise, all frequencies have the same prob-
compute the statistical weight, of a given modemin the  apility of being found in the profileswhite nois¢. Math-

N
a,
f(x):EOerE:l

[ 27mx
+ bmsm( L )

series by ematically, this fact results in Fourier series which are sums
of sinesand cosineswith nearly the same statistical weights
A= /a§1+ bﬁ]. (3) An. On the contrary, for=r_. the periodic shape of the

profiles implies the existence of a characteristic mbtlan
_ _ each profile. The value oM is equals to the number of
The knowledge of all weight8.,, allows us to determine the ripples in the profile. The plot of\,, as a function of the

mean amplitudé€A) of the ripples, Fourier modes will thus exhibit a peak corresponding to the
mode M. Eventually, the critical radius. is equal to the
N radius where the first peak is recorded. Practicallyis de-
(A)=1/ > A2, (4)  fined as the radius where the highest peak reaches a defined
m=1 threshold value.
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FIG. 5. AmplitudeA,, of the different Fourier modem as a
function of the radiug. Since the instability is characterized by ~ FIG. 7. Critical radius ; as a function of the rotation speed
periodic profiles, Fourier peaks are observed in the spectrum onb fit using Eq.(6) is also illustrated. The power exponent is found
for radii r>r,. On the contrary, stable regions have no periodicto be equal to-1/2.
characteristics. The critical radiug=4.1 cm is emphasized by a
solid line. The experimental parameters agex45.18 rpm anch Plotting the critical radius as a function of the rotation
=1cm. speedw (see Fig. 7 shows that the instability rises as sooner
In Fig. 5, we report the amplitudes,, of the different as the fluid speed is high. Fitting the data with the single
Fourier modes as a function of the radiu©ne can see that POWer law
peaks appear only far=4.1 cm, meaning.=4.1 cm. Note
that in this caseM~6 forr=r..
We have studied the dependencergfon the height of
water and the rotation speed. Figure 6 presents the meame found thatr is roughly equal to—1/2. From the defini-
ripple amplitude(A) as a function of the radiusfor differ-  tion of Eq.(1), we deduce that theritical Reynolds number
ent values oh at fixedw =41.38 rpm. First, one should note Re. is constant, and is
that ther axis can be decomposed into two distinct regions:
(i) If r<r, all curves are nearly constant. This is the
stat_)_le part of the sand-water interface. N Re.= r23~ 16. 7)
(ii) Forr=r., all curves grow. Note that the critical ra- 4
dius is the same for all curves. This means that the birth of
the instability is not controlled by the height of water.
Moreover, one can see hofi) is inversely proportional
to h. Thus, the higher the velocity gradient of the water is, Using Eq.(5), we have studied the evolution of the mean

r{(w)=a+bo’, (6)

C. Ripple wavelength(\)

the larger are the ripples. ripple wavelength{\) from the center of the plate, to the
00 sides of the container. Below the critical radiys no modu-
N 1 lation is observed ang\) is nearly zero.
20 qw:é;g amx Within the unstable part of the interface, the measurement
My = 3.2 orT=-= / of the mean ripple wavelength is perturbated by the presence
18 of “defects.” Indeed, when two ripples collapse a jump of
16 /? (\) is recorded. We have noticed that on an image, the de-
3 7 fects are almost situated at the same radius. Their role is to
814 £ adjust the number of ripples to the shear conditions. In order
<C *ﬁ. to increase the accuracy of the measurements, we have de-
12 ;m-,xf,-' composed the wholerange into intervals which do not con-
10 . /)gf:ﬁ il tain such defects.
{/_'\H/ %x"*i’.i We have found tha¢\) grows linearly with the distance
8 IRANE 5 e e el form the center of the plate:
i doi-2d s ST PT S
65 ! : & & 5 R (Ny=pr for r>rg. 8

r (cm)

FIG. 6. Mean amplitudé¢A) as a function of the radius Dif- This observation is consistent with the existence of spirals
ferent values of the water heightare illustrated. The solid vertical With constant arm numbers in the considered intervals.
line gives the critical radius, . One should note that seems to be Moreover, we have noticed that the growth r@teloes not
independent oh. depend on the height of water but decreases with the rotation
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FIG. 9. The azimuthal angle is defined as the angle between
the ripples crestdashed lingand the tangential direction. The azi-
muthal angles is measured between two concentric circsslid
lines) of radii r andr + Ar, respectively Ar=0.25 cm).

FIG. 8. Log-log graph giving the growth ra@ of the mean
ripple wavelength{\) as a function of the rotation speed A fit
using Eq.(9) is also illustrated.

D. Azimuthal angle

Going deeper into the geometrical description of the pat-
terns, we have measured the azimuthal argt¥ the spiral
. ) arms. This parameter is defined at a given point by the angle
speedw, according to a power law with power exponent henveen a ripple crest and the tangential line to the circle
—1. Eventually, we see that the mean ripple wavelength.entered on the plate and passing by the considered point
obeys the scaling (see Fig. 9. Practically,e is measured between two concen-
tric circles with radii differing fromAr=0.25 cm.

In order to determine the influence of the experimental
parameterd, », andr on the azimuthal angle , we have
proceeded as follows. At a given distance from the center of
the container, i.e., a givenvalue, and a givem value, we
. . measured for different values of the height of watar This
In Fig. 8, we have plotte@ as a function o as well as a 065 is repeated all over the container diameter. Then, the
fit using Eq.(9). height of waterh was fixed, and the procedure explained

An Interpretation of the decrea_se ﬁfcan be dedu_ced above was applied for different values of the rotation
from the phase diagram illustrated in Fig. 4. As the height ofS eed.
water Is changed at fixed rotation speed, no major modifica- We have noticed that the azimuthal anglencreases with
tion of the patterns_ is observedearly same wavelength the distance from the center of the container as well as with
The consequence is that does not depend oh. On the 0 eight of wateh and the rotation speed. Moreover, the
other way, we have seen thatmay cause the appearance of o 4qrements collapse when they are plotted as a function of
a second spiral. Such an occurrence results in a larggf producher (see Fig. 10 It appears that the experimen-

amount of spiral arms, 1.6, In a Iarger_ number of r_lpples.ta| data could be considered as following a power law as well
Therefore, the mean ripple wavelength is lower wheim-

creases. The small values @f at large w values clearly 100 . . : .
shows this fact.

An important observation is thato well-defined transi-
tion is observed in the curve, giving\) as a function ofw. ~d_
Indeed, the decrease of the mean ripple wavelength seems 1
be continuous. The way of appearance of the so-called sec
ond spiral is one reason explaining this result. At
~35 rpm, the second spiral is formed but has a smaller am-
plitude than the former spiral. The statistical weight of its
wavelength is thus smaller than those of the former spiral. As
the rotation speed increases, the second spiral amplitud
growth. Eventually, the measured mean ripple wavelength
corresponds to the number of spiral arms of both spirals, i.e.
becomes at least twice those measured when only one spir 1
was observed. One should note that sificgis divided by a
factor larger than 2, we see that the hydrodynamics also
tends to increase the number of arms of each spiral. This has FIG. 10. Semilog graph of the azimuthal angles a function
been mentioned above as the origin of the defects in thef the rotation speed multiplied by the height of wateh and the
spiral patterns. radial distance. A fit using Eq.(10) is also illustrated.
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as saturating exponentially. We have chosen the exponential TABLE I. Behaviors of the physical parametéps), & , and Re
law in order to avoid the azimuthal angle to grow to infinity. for different experiments.
The fit of the datasets shows that

Scaling
F{ hor Parameters Here Thom§gs] Bodewadt[5]
e=gy—aeXpg — —|, (10
@2 (\) ~rlw ~r ~cte
where g, =47°+8° is the asymptotical value of the azi- N ~hor ~rf(’)-51 ~cte
muthal angle at highwr values,a; and a, being fitting R& ~16 e ~40
parameters.

From Eq.(10), one can see that the azimuthal angle _ o o .
meets the horizontal axiGay, e =0), for the critical hor Despite the similarity between the patterns, it is not obvi-
product valuep., ous that the spiral patterns observed here are of the same

nature as the fluid ones or as the Thomas ones. We are now
em oo attempting to make some comparison in order to differentiate
Pc=azIn o =310" m°s . (1D petween the different kinds of instabilities. It is important to

notice that Baewadt flows are very complicated to create

Since the azimuthal angle is zero at this critical vajie experimentally. As a consequence, there is a poor amount of
concentric circles must be observed faor = p, and spirals data. ] ) } ) )
with azimuthal angles <0 for values ofhwr <p.. How- The major dlffergnce between the “granular experiments
ever, we have never observed such patterns. and the fluid ones is the dependence of the mean wavelength
An interpretation of this can be deduced from the consid-0f the patterns on the distance from the ceiisere Table)l
eration of the fluid momenturR=mv, wheremis the mass [N Thomas and our experiments, the mean pattern wave-
of fluid, and v its linear speed. Considering that=1 length increases with distance from the center while it is

X 10° kgm2 is the density of the fluid, and that the radius nearly constant in fluid experiments. However, the order of

of the containerR=0.11 m, one gets magnitude of\) for all experiments is about 1 cm.
’ The values of the azimuthal angle of the spirals observed
P=pmR?hor, (12 in fluid experiments range between 13° and 17°, what is

nearly constant compared to the angles measured by Thomas
what contains thévwr term. This thus means that the value (between 20° to 70°) and the angles we measuiredn 4°
of the azimuthal angle is governed by the fluid momentum, at low fluid momentum to 45° at higher fluid momentum
according to Eq(10). Combining Eqs(10) and(12) we are  The most important observation is thatncreases with the
able to predict the fluid momentum corresponding to concenradius in our experiment, while it decreases in R6f.

tric circles. This critical momenturR_ reads Measurements of critical Reynolds numbers show that
5 . Re. decreases with the rotation speed in all experiments.
Pc=pmR°p.=0.011 kg m s~ (13)  However, the dependence is very slight in fluid experiments,

) ) ) ) ) compared to what is observed in granular ones. Moreover,
For fluid momentunP<P., spirals with negative azimuthal Re<40 in fluid experiments and is only around 16 here.
angles must be created. o From the comparison of the orders of magnitude and the
The fact that no concentric circles are observed comepenayiors, we can conclude that the instability observed here
from the lack of granular transport for such small fluid mo-is not the signature of an instability in the boundary layer.
mentum. Indeed, ripples are only created when the grains afghat we observed here are ripples, similar to those observed
transported in the fluid, and this is only possible if the fluid; -oastal areas, but in a rotating frame. The spiral shape
shear stress exceeds a certain threshold. Typically, ripples af§;med by the ripple crests may be due to the presence of

i <1
observed only for fluid momentui?>0.1 kg ms . centrifugal forces and other effects caused by the motion of
the grains in the fluid. Despite the apparent similarity be-

IV. DISCUSSION tween our experiment and RdB], the created patterns do

. . . . not behave in the same way, emphasizing the complexity of
The instability encountered in our experiment creates pa fh . . .
S . - the fluid-granular interaction.
terns very similar to those observed in the case of a flui
flowing over a disk at redtl—4]. The instability resulting in
such patterns takes place in thed@wadt boundary layer,
i.e., in the boundary layer over the bottom disk. The patterns
we observe are also similar to those observed in Thomas’ An experimental study of the instability rising on a sand-
experiment9]. In the latter experiment the ripples are cre- water interface has been proposed. The formation of the spi-
ated by an acceleration of the container. The acceleration ratal patterns has been shown and has been described with the
A w is somewhat analogous to the rotation speguresented help of a phase diagram.
here. Hereafter, our experiment and the Thomas one will be The properties of the critical radius where the instability
referred as “granular” one, while those in Refd.—4] will forms have been studied. The critical radiysis found to

be defined as “fluid” experiments. decrease with the rotation speed of the container, according

V. SUMMARY
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to a square law, giving a critical Reynolds number equal tcas well as a comparison with an experiment of ripple forma-

Re.~16. tion in an accelerated frame, allows us to conclude that the
The mean ripple wavelength is proportional to the dis-observed patterns are not the signature of a fluid instability.

tance from the center of the container and inversely proporThe instability of the sand-water interface we observe are

tional to the rotation speed of the container. Studying thesimilar to natural ripples created in a rotating frame.

azimuthal angles of the spirals, we have shown that this

angle is governed by the momentum of the fluRkmu, ACKNOWLEDGMENTS
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